

3. Инструкция по эксплуатации программного обеспечения VOR 2700 (RU.AECФ.30008-01)

1 ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Программное обеспечение VOR 2700 (RU.AECФ.30008-01) является программным блоком автоматизированных систем управления азимутального радиомаяка VOR 2700 (далее по тексту – радиомаяк). Программное обеспечение VOR 2700 (RU.AECФ.30008-01) выполняет следующие задачи:

- включение, отключение, переключение комплектов радиомаяка в местном и дистанционном режимах;
- автоматический переход на резервный комплект и/или отключение, в случае аварийного состояния параметров радиомаяка;
- о отображение состояния радиомаяка и его модулей локально, на экранах АДУ и МАРМ;
- передача информации об изменениях состояний радиомаяка в систему логгирования на л лу.

АДУ;

- о авторизацию и аутентификацию пользователей системы;
- о отображение состояний и управление системами жизнеобеспечения контейнера.

Общие сведения ПО компонентов входящих в состав программного обеспечения VOR 2700 (RU.AECФ.30008-01) описаны в соответствующих документах:

- Инструкция по эксплуатации программное обеспечение шкафа АДУ RCE 2700 (RU.AECФ.30000-01).
- Инструкция по эксплуатации программное обеспечение MAPM MWS 2700 (RU.AECФ.30002-01).

В тексте приняты следующие сокращения:

- АДУ аппаратура дистанционного управления;
- AM амплитудная модуляция;
- АМУ антенно-мачтовое устройство;
- АРУ автоматическая регулировка усиления;
- АЦП аналого-цифровой преобразователь;
- БЧ боковая частота;
- ВС воздушное судно;
- ВЧ высокая частота;
- ДН диаграмма направленности;
- ДУ дистанционное управление;
- ДГУ дизель-генераторная установка;
- 3Д запрос дальности;
- ИБП источник бесперебойного питания;
- ИТР инженерно-технический работник;

КА – контрольная антенна;

- КДП командно-диспетчерский пункт;
- МАРМ мобильное автоматизированное рабочее место;
- НБЧ несущая и боковая частоты;
- ПРД передатчик;
- ПРД_БЧ передатчик боковой частоты;
- ПРД_НБЧ передатчик несущей частоты
- ОВЧ очень высокая частота;
- ОД ответ дальности;
- ОКО (программа) обобщенного контроля объектов;
- РКО (программа) расширенного контроля объектов;
- УА устройство автоматики;
- УК устройство контроля;
- УМ усилитель мощности;
- ICAO Международная организация гражданской авиации;
- VOR всенаправленный азимутальный ОВЧ радиомаяк.

2 УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

VOR 2700 может находиться в следующих состояниях:

отключен,

дежурный режим;

рабочий режим.

VOR 2700 имеет два режима управления, переводящих его из дежурного режима в рабочий: местное управление (МУ),

дистанционное управление (ДУ).

Изменение режима управления производится нажатием кнопки «МУ/ДУ» на лицевой панели устройства автоматики.

В режиме ДУ управление производится с помощью виртуальных кнопок АДУ или МАРМ. Данный режим является режимом автоматического функционирования VOR 2700.

2.1 Режим местного управления

2.1.1 В режиме МУ управление радиомаяком производится с помощью кнопок на лицевой панели устройства автоматики и с помощью виртуальных кнопок в окне PKO Vor для пользователя с уровнем доступа не ниже «инженер». Управление системы автоматического контроля отключено. При включенном маяке индикация общего состояния в местном режиме всегда «Авария».

2.2 Режим дистанционного управления

2.2.1 Дистанционный режим предназначен для нормальной работы приемоответчика. В дистанционном режиме управления можно подключать МАРМ к любой микроЭВМ. Это производится соединением с помощью пачкорда разъема «LAN» MAPM с одним из разъемов «МикроЭВМ 1», «МикроЭВМ 2» шкафа, для целей управления приемоответчиком. Подключение МАРМ для целей считывания состояния может осуществляться к любой микроЭВМ, а для целей управления устройствами приемоответчика только к основной микроЭВМ.

2.2.2 В дистанционном режиме управление доступно только из окон АДУ (шкафа АДУ и МАРМ).

2.3 В окне обобщенного управления во вкладках «управление» и «оборудование» (рисунок 2.1) есть органы управления, которые позволяют производить:

включение азимутального радиомаяка (1-й включается как основной, 2-й в резерве); отключение азимутального радиомаяка.

Клавиша вызова окна расширенного управления и контроля

Рисунок 2.1 – Окно обобщенного управления.

2.4 В окне обобщенного управления во вкладке «ТУ-ТС» есть органы управления, которые позволяют производить:

- смену основной микро ЭВМ;
- исключение каждой из микро ЭВМ из работы аппаратуры ДУ;
- запуск каждой из микро ЭВМ в работу аппаратуры ДУ.

2.5 В окне расширенного управления и контроля есть органы управления и индикации (рисунок 4.3):

включение в работу 1-го комплекта азимутального радиомаяка (2-й включается в резерв);

– включение в работу 2-го комплекта азимутального радиомаяка (1-й включается в резерв);

 переключение комплектов азимутального радиомаяка с рабочего на резервный в режиме работы;

– отключение комплектов азимутального радиомаяка – перевод в дежурный режим;

 – элементы индикации, позволяющие отображать состояние каналов связи с каждой микро ЭВМ, состояние каждого комплекта.

Индикатор общего состояния радиомаяка

Рисунок 2.2 – Органы управления и индикации окне расширенного управления и контроля.

2.6 Отображение состояния азимутального радиомаяка

Индикаторы на панели устройства автоматики и в окнах аппаратуры ДУ отображают общее состояние азимутального радиомаяка. В окне расширенного управления и контроля дополнительно есть индикатор режима работы (местный/дистанционный).

Аварийные состояния и состояние ухудшения запоминаются системой контроля. Они могут быть сброшены только выключением азимутального радиомаяка.

После устранения причины аварии (ухудшения) оператор должен произвести либо выключение в режиме местного управления с последующим включением азимутального радиомаяка в режиме дистанционного управления, либо при работающем радиомаяка перевести его в режим ДУ, при этом и контрольные устройства и микро ЭВМ начнут новый цикл контроля, сбросив предыдущие состояния.

Для выбора окна расширенного управления и контроля необходимо нажать виртуальную кнопку «VOR» на вкладке «Все объекты» окна обобщенного управления.

В раскрывшемся окне доступны 5 вкладок:

- «Функциональная схема»;
- «Секция»;
- «Контроль и управление»;
- «Конфигурация».

2.6.1 Функциональная схема. Она позволяет проследить состояние последовательных интерфейсов RS-485 азимутального радиомаяка и отображает положение СВЧ реле.

2.6.2 Вкладка «Контроль и управление» дает возможность вывести в таблицу интересующие параметры азимутального радиомаяка) из выпадающего списка всех доступных параметров. В таблице будут отображаться текущие значения выбранных параметров.

Набор параметров может быть сохранен под каким-либо именем с тем, чтобы впоследствии его можно было вызвать по этому имени.

admin VOR 2700 Nav									
Сервис Окна									
Функциональная схема Се	екция (Контроль и	управление	Конфигурация					
Регулировки									
Наборы	×	Измеряемые г	араметры						×
Установить		Узел	Название	Ì	Значение	Мин.	Соответствие	Макс.	Ед. изм.
КСВН		УК1	Отклон. част	готы несущей Ант 1	0	-1000		1000	Гц
Темп ПРД		УК1	Уровень ВЧ Ант 1		0.48	-0.90		2.10	дБм
УК1		УК1	Частота поднесущей Ант 1		9960.0	9910.0		10010.0	Гц
УК2		УК1	КАМ поднес	ущей Ант 1	30.5	26.0		34.0	%
Обмен		УК1	Девиация по	днесущей Ант 1	479.8	460.0		500.0	Гц
KA1		УК1	Частота огиб	бающей опорной фазы Ант 1	30.0	29.8		30.2	Гц
KA2		УК1	Частота огиб	бающей переменной фазы Ант 1	30.0	29.8		30.2	Гц
		УК1	КАМ сигнал	а переменной фазы Ант 1	31.1	26.0		34.0	%
		УК1	Азимут Ант 1	L	-0.33	-2.00		2.00	•
		УК1	КАМ СО Ант	1	5.0	4.0		6.0	%
		УК1	Частота СО /	Ант 1	1020.0	1000.0		1040.0	Гц
		УК2	Отклон. част	готы несущей Ант 1	0	-1000		1000	Гц
		УК2	Уровень ВЧ /	Ант 1	0.47	-0.70		3.30	дБм
		УК2	Частота под	несущей Ант 1	9960.0	9910.0		10010.0	Гц
		УК2	КАМ поднес	ущей Ант 1	30.5	26.0		34.0	%
		УК2	Девиация по	днесущей Ант 1	479.7	460.0		500.0	Гц
		УК2	Частота огиб	бающей опорной фазы Ант 1	30.0	29.8		30.2	Гц
		УК2	Частота огиб	бающей переменной фазы Ант 1	30.0	29.8			Гц
		УК2	КАМ сигнала	а переменной фазы Ант 1	31.2	26.0		34.0	%
		УК2	Азимут Ант 1	L	-0.33	-2.00		2.00	•
		УК2	КАМ СО Ант	1	5.0	4.0		6.0	%
		УК2	Частота СО /	Ант 1	1020.0	1000.0		1040.0	Гц
+ 4 2 7 7	×								
ВклРез ОтклРез						авария	Вкл1 • Вкл2 • Откл	🕘 树 Связь с	микроЭВМ 赺 凄

2.6.3 Во вкладке «Конфигурация» выполняются операции:

– сохранить конфигурацию в файл на жесткий диск МАРМ, а также загрузить из файла и записать в радиомаяк;

– выполнить операции записи в память/чтение из памяти радиомаяка и микроЭВМ на разных уровнях, а именно:

⁵²

— (F2) загрузка параметров в устройства радиомаяка, которые установлены во вкладках

«Конфигурация»:

- «Основные настройки»;
- «Установки ПРД»;
- «Установки контроля».

– (F3) считывание параметров из устройств радиомаяка и отображение их во вкладке

«Конфигурация»;

(F4) сохранение конфигурации в энергонезависимую память маяка (в энергонезависимую память кросс-платы секции);

– (F5) сохранение резервной копии конфигурации в файл на микроЭВМ, находящейся в режиме «Master»;

– (F6) восстановление конфигурации из резервной копии, ранее сохраненной в файл микроЭВМ, находящейся в режиме «Master» в устройства и в энергонезависимую память кроссплаты секции;

(F7) формирование карты контрольных режимов и фактических значений шкафа в файл на МАРМ. При длительном нажатии открывается дополнительное меню.

Внимание! Загрузка конфигурации из резервной копии (клавиша F6) влечёт за собой полную замену информации в энергонезависимой памяти.

admin VOR 2700 Nav							
Функциональная схема	Секция Контрол	ь и управление	Конфигурация				
Утилиты	k	**	F4	1	F5.	#	
Текущая конфигурация					📄 Загрузить	📻 Сохранить	🛃 Сохранить как
Основные настройки	Установки контроля	Установки ПРД					
			Частота несущей:	114,900 МГц ≑	КАМ поднесущей:	30,0 牵	
		п	оправка азимута ант. 1:	11,00 ° 🌲	КАМ СО:	5,0 🜩	
		п	оправка азимута ант. 2:	11,00 ° ≑	КАМ РТС:	30,0 ≑	
			Режим СО: М	орзе 💌	Девиация поднесущей:	16,0 🜩	
		Си	нхронизация СО с DME: В	u 🔽	Смещение азимута:	-56,0 ° 🔶	
			Код СО: S	TW			
		Чувствител	ьность контроля +6дБ: О	ткл 💌			
			ĺ	Время наработки —			
			l	105			
ВклРез ОтклРез					авария	Вкл1 • Вкл2 • От	кл 💿 树 Связь с микроЭВМ 🍉 📑

2.6.4 Вкладка «Секция». На ней показаны полные наименования и позиционные обозначения устройств, ходящих в состав секции. Кроме того, отображается состояние этих устройств.

Аварийные устройства имеют позиционные обозначения на красном фоне, устройства в состоянии нормы – на зеленом фоне, а если состояние неизвестно, то – на сером фоне.

2.7 Из окна обобщенного управления можно вызвать окно расширенного контроля системы питания шкафа, нажав на виртуальную кнопку «Электропитание», расположенную под кноп-кой «VOR».

В окне отображается функциональная схема системы питания шкафа, аналогичная схеме,

приведенной на рис. 2.4.

На этой схеме отображается состояние устройств и цепей системы электропитания шкафа:

- красным цветом аварийные цепи и устройства,
- зеленым цветом -цепи и устройства, имеющие состояние нормы,
- серым цветом цепи и устройства, состояние которых неопределенно.

